"zeta function" meaning in English

See zeta function in All languages combined, or Wiktionary

Noun

Forms: zeta functions [plural]
Head templates: {{en-noun}} zeta function (plural zeta functions)
  1. (mathematics) function of the complex variable s that analytically continues the sum of the infinite series ∑ₙ₌₁ ᪲1/(nˢ) that converges when the real part of s is greater than 1. Categories (topical): Functions, Mathematics Translations (function): zeeta-funktio (Finnish), ζ-Funktion [feminine] (German), zeta-fonksiyonu (Turkish)
    Sense id: en-zeta_function-en-noun-AqA2N6Jg Categories (other): English entries with incorrect language header, Entries with translation boxes, Pages with 1 entry, Pages with entries, Terms with Finnish translations, Terms with German translations, Terms with Turkish translations Topics: mathematics, sciences Hyponyms: Airy zeta-function, Arakawa–Kaneko zeta-function, arithmetic zeta-function, Artin–Mazur zeta-function, Barnes zeta-function, Beurling zeta-function, Dedekind zeta-function, double zeta-function, Epstein zeta-function, Euler-Riemann zeta-function, Goss zeta-function, Hasse–Weil zeta-function, height zeta-function, Hurwitz zeta-function, Igusa zeta-function, Ihara zeta-function, Lefschetz zeta-function, Lerch zeta-function, L-function, local zeta-function, Matsumoto zeta-function, Minakshisundaram–Pleijel zeta-function, Mordell–Tornheim zeta-function, Motivic zeta-function, multiple zeta-function, p-adic zeta-function, prime zeta-function, Riemann zeta-function, Ruelle zeta-function, Selberg zeta-function, Shimizu L-function, Shintani zeta-function, subgroup zeta-function, Witten zeta-function

Inflected forms

{
  "forms": [
    {
      "form": "zeta functions",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "zeta function (plural zeta functions)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Finnish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with German translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Turkish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Functions",
          "orig": "en:Functions",
          "parents": [
            "Algebra",
            "Calculus",
            "Geometry",
            "Mathematical analysis",
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "glosses": [
        "function of the complex variable s that analytically continues the sum of the infinite series ∑ₙ₌₁ ᪲1/(nˢ) that converges when the real part of s is greater than 1."
      ],
      "hyponyms": [
        {
          "word": "Airy zeta-function"
        },
        {
          "word": "Arakawa–Kaneko zeta-function"
        },
        {
          "word": "arithmetic zeta-function"
        },
        {
          "word": "Artin–Mazur zeta-function"
        },
        {
          "word": "Barnes zeta-function"
        },
        {
          "word": "Beurling zeta-function"
        },
        {
          "word": "Dedekind zeta-function"
        },
        {
          "word": "double zeta-function"
        },
        {
          "word": "Epstein zeta-function"
        },
        {
          "word": "Euler-Riemann zeta-function"
        },
        {
          "word": "Goss zeta-function"
        },
        {
          "word": "Hasse–Weil zeta-function"
        },
        {
          "word": "height zeta-function"
        },
        {
          "word": "Hurwitz zeta-function"
        },
        {
          "word": "Igusa zeta-function"
        },
        {
          "word": "Ihara zeta-function"
        },
        {
          "word": "Lefschetz zeta-function"
        },
        {
          "word": "Lerch zeta-function"
        },
        {
          "word": "L-function"
        },
        {
          "word": "local zeta-function"
        },
        {
          "word": "Matsumoto zeta-function"
        },
        {
          "word": "Minakshisundaram–Pleijel zeta-function"
        },
        {
          "word": "Mordell–Tornheim zeta-function"
        },
        {
          "word": "Motivic zeta-function"
        },
        {
          "word": "multiple zeta-function"
        },
        {
          "word": "p-adic zeta-function"
        },
        {
          "word": "prime zeta-function"
        },
        {
          "word": "Riemann zeta-function"
        },
        {
          "word": "Ruelle zeta-function"
        },
        {
          "word": "Selberg zeta-function"
        },
        {
          "word": "Shimizu L-function"
        },
        {
          "word": "Shintani zeta-function"
        },
        {
          "word": "subgroup zeta-function"
        },
        {
          "word": "Witten zeta-function"
        }
      ],
      "id": "en-zeta_function-en-noun-AqA2N6Jg",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "function",
          "function"
        ],
        [
          "complex variable",
          "complex variable"
        ],
        [
          "infinite series",
          "infinite series"
        ],
        [
          "real part",
          "real part"
        ]
      ],
      "raw_glosses": [
        "(mathematics) function of the complex variable s that analytically continues the sum of the infinite series ∑ₙ₌₁ ᪲1/(nˢ) that converges when the real part of s is greater than 1."
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "translations": [
        {
          "code": "fi",
          "lang": "Finnish",
          "sense": "function",
          "word": "zeeta-funktio"
        },
        {
          "code": "de",
          "lang": "German",
          "sense": "function",
          "tags": [
            "feminine"
          ],
          "word": "ζ-Funktion"
        },
        {
          "code": "tr",
          "lang": "Turkish",
          "sense": "function",
          "word": "zeta-fonksiyonu"
        }
      ]
    }
  ],
  "word": "zeta function"
}
{
  "forms": [
    {
      "form": "zeta functions",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "zeta function (plural zeta functions)",
      "name": "en-noun"
    }
  ],
  "hyponyms": [
    {
      "word": "Airy zeta-function"
    },
    {
      "word": "Arakawa–Kaneko zeta-function"
    },
    {
      "word": "arithmetic zeta-function"
    },
    {
      "word": "Artin–Mazur zeta-function"
    },
    {
      "word": "Barnes zeta-function"
    },
    {
      "word": "Beurling zeta-function"
    },
    {
      "word": "Dedekind zeta-function"
    },
    {
      "word": "double zeta-function"
    },
    {
      "word": "Epstein zeta-function"
    },
    {
      "word": "Euler-Riemann zeta-function"
    },
    {
      "word": "Goss zeta-function"
    },
    {
      "word": "Hasse–Weil zeta-function"
    },
    {
      "word": "height zeta-function"
    },
    {
      "word": "Hurwitz zeta-function"
    },
    {
      "word": "Igusa zeta-function"
    },
    {
      "word": "Ihara zeta-function"
    },
    {
      "word": "Lefschetz zeta-function"
    },
    {
      "word": "Lerch zeta-function"
    },
    {
      "word": "L-function"
    },
    {
      "word": "local zeta-function"
    },
    {
      "word": "Matsumoto zeta-function"
    },
    {
      "word": "Minakshisundaram–Pleijel zeta-function"
    },
    {
      "word": "Mordell–Tornheim zeta-function"
    },
    {
      "word": "Motivic zeta-function"
    },
    {
      "word": "multiple zeta-function"
    },
    {
      "word": "p-adic zeta-function"
    },
    {
      "word": "prime zeta-function"
    },
    {
      "word": "Riemann zeta-function"
    },
    {
      "word": "Ruelle zeta-function"
    },
    {
      "word": "Selberg zeta-function"
    },
    {
      "word": "Shimizu L-function"
    },
    {
      "word": "Shintani zeta-function"
    },
    {
      "word": "subgroup zeta-function"
    },
    {
      "word": "Witten zeta-function"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "Entries with translation boxes",
        "Pages with 1 entry",
        "Pages with entries",
        "Terms with Finnish translations",
        "Terms with German translations",
        "Terms with Turkish translations",
        "en:Functions",
        "en:Mathematics"
      ],
      "glosses": [
        "function of the complex variable s that analytically continues the sum of the infinite series ∑ₙ₌₁ ᪲1/(nˢ) that converges when the real part of s is greater than 1."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "function",
          "function"
        ],
        [
          "complex variable",
          "complex variable"
        ],
        [
          "infinite series",
          "infinite series"
        ],
        [
          "real part",
          "real part"
        ]
      ],
      "raw_glosses": [
        "(mathematics) function of the complex variable s that analytically continues the sum of the infinite series ∑ₙ₌₁ ᪲1/(nˢ) that converges when the real part of s is greater than 1."
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "translations": [
    {
      "code": "fi",
      "lang": "Finnish",
      "sense": "function",
      "word": "zeeta-funktio"
    },
    {
      "code": "de",
      "lang": "German",
      "sense": "function",
      "tags": [
        "feminine"
      ],
      "word": "ζ-Funktion"
    },
    {
      "code": "tr",
      "lang": "Turkish",
      "sense": "function",
      "word": "zeta-fonksiyonu"
    }
  ],
  "word": "zeta function"
}

Download raw JSONL data for zeta function meaning in English (2.7kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-10 from the enwiktionary dump dated 2025-01-01 using wiktextract (df33d17 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.